Monthly Archives: December 2020

Inexpensive highly available LXD cluster: Server setup

The previous post went over the planned redundancy aspect of this setup at the storage, networking and control plane level. Now let’s see how to get those systems installed and configured for this setup.

Firmware updates and configuration

First thing first, whether its systems coming from an eBay seller or straight from the factory, the first step is always to update all firmware to the latest available.

In my case, that meant updating the SuperMicro BMC firmware and then the BIOS/UEFI firmware too. Once done, perform a factory reset of both the BMC and UEFI config and then go through the configuration to get something that suits your needs.

The main things I had to tweak other than the usual network settings and accounts were:

  • Switch the firmware to UEFI only and enable Secure Boot
    This involves flipping all option ROMs to EFI, disabling CSM and enabling Secure Boot using the default keys.
  • Enable SR-IOV/IOMMU support
    Useful if you ever want to use SR-IOV or PCI device passthrough.
  • Disable unused devices
    In my case, the only storage backplane is connected to a SAS controller with nothing plugged into the SATA controller, so I disabled it.
  • Tweak storage drive classification
    The firmware allows configuring if a drive is HDD or SSD, presumably to control spin up on boot.

Base OS install

With that done, I grabbed the Ubuntu 20.04.1 LTS server ISO, dumped it onto a USB stick and booted the servers from it.

I had all servers and their BMCs connected to my existing lab network to make things easy for the initial setup, it’s easier to do complex network configuration after the initial installation.

The main thing to get right at this step is the basic partitioning for your OS drive. My original plan was to carve off some space from the NVME drive for the OS, unfortunately after an initial installation done that way, I realized that my motherboard doesn’t support NVME booting so ended up reinstalling, this time carving out some space from the SATA SSD instead.

In my case, I ended up creating a 35GB root partition (ext4) and 4GB swap partition, leaving the rest of the 2TB drive unpartitioned for later use by Ceph.

With the install done, make sure you can SSH into the system, also check that you can access the console through the BMC both through VGA and through the IPMI text console. That last part can be done by dumping a file in /etc/default/grub.d/ that looks like:

GRUB_CMDLINE_LINUX="${GRUB_CMDLINE_LINUX} console=tty0 console=ttyS1,115200n8"

Finally you’ll want to make sure you apply any pending updates and reboot, then check dmesg for anything suspicious coming from the kernel. Better catch compatibility and hardware issues early on.

Networking setup

On the networking front you may remember I’ve gotten configs with 6 NICs, two gigabit ports and four 10gbit ports. The gigabit NICs are bonded together and go to the switch, the 10gbit ports are used to create a mesh with each server using a two ports bond to the others.

Combined with the dedicated BMC ports, this ends up looking like this:

Here we can see the switch receiving its uplink over LC fiber, each server has its BMC plugged into a separate switch port and VLAN (green cables), each server is also connected to the switch with a two port bond (black cables) and each server is connected to the other two using a two port bond (blue cables).

Ubuntu uses Netplan for its network configuration these days, the configuration on those servers looks something like this:

network:
  version: 2
  ethernets:
    enp3s0f0:
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 9000
    enp3s0f1:
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 9000
    enp1s0f0:
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 9000
    enp1s0f1:
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 9000
    ens1f0:
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 9000
    ens1f1:
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 9000

  bonds:
    # Connection to first other server
    bond-mesh01:
      interfaces:
        - enp3s0f0
        - enp3s0f1
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 9000
      parameters:
        mode: 802.3ad
        lacp-rate: fast
        mii-monitor-interval: 100
        transmit-hash-policy: layer3+4

    # Connection to second other server
    bond-mesh02:
      interfaces:
        - enp1s0f0
        - enp1s0f1
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 9000
      parameters:
        mode: 802.3ad
        lacp-rate: fast
        mii-monitor-interval: 100
        transmit-hash-policy: layer3+4

    # Connection to the switch
    bond-sw01:
      interfaces:
        - ens1f0
        - ens1f1
      link-local: []
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 1500
      parameters:
        mode: 802.3ad
        lacp-rate: fast
        mii-monitor-interval: 100
        transmit-hash-policy: layer3+4

  vlans:
    # WAN-HIVE
    bond-sw01.50:
      link: bond-sw01
      id: 50
      link-local: []
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 1500

    # INFRA-UPLINK
    bond-sw01.100:
      link: bond-sw01
      id: 100
      link-local: []
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 1500

    # INFRA-HOSTS
    bond-sw01.101:
      link: bond-sw01
      id: 101
      link-local: []
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 1500

    # INFRA-BMC
    bond-sw01.102:
      link: bond-sw01
      id: 102
      link-local: []
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 1500

  bridges:
    # WAN-HIVE
    br-wan-hive:
      interfaces:
        - bond-sw01.50
      link-local: []
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 1500

    # INFRA-UPLINK
    br-uplink:
      interfaces:
        - bond-sw01.100
      link-local: []
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 1500

    # INFRA-HOSTS
    br-hosts:
      interfaces:
        - bond-sw01.101
      accept-ra: true
      dhcp4: false
      dhcp6: false
      mtu: 1500
      nameservers:
        search:
          - stgraber.net
        addresses:
          - 2602:XXXX:Y:10::1

    # INFRA-BMC
    br-bmc:
      interfaces:
        - bond-sw01.102
      link-local: []
      accept-ra: false
      dhcp4: false
      dhcp6: false
      mtu: 1500

That’s the part which is common to all servers, then on top of that, each server needs its own tiny bit of config to setup the right routes to its other two peers, this looks like this:

network:
  version: 2
  bonds:
    # server 2
    bond-mesh01:
      addresses:
        - 2602:XXXX:Y:ZZZ::101/64
      routes:
        - to: 2602:XXXX:Y:ZZZ::100/128
          via: fe80::ec7c:7eff:fe69:55fa

    # server 3
    bond-mesh02:
      addresses:
        - 2602:XXXX:Y:ZZZ::101/64
      routes:
        - to: 2602:XXXX:Y:ZZZ::102/128
          via: fe80::8cd6:b3ff:fe53:7cc

  bridges:
    br-hosts:
      addresses:
        - 2602:XXXX:Y:ZZZ::101/64

My setup is pretty much entirely IPv6 except for a tiny bit of IPv4 for some specific services so that’s why everything above very much relies on IPv6 addressing, but the same could certainly be done using IPv4 instead.

With this setup, I have a 2Gbit/s bond to the top of the rack switch configured to use static addressing but using the gateway provided through IPv6 router advertisements. I then have a first 20Gbit/s bond to the second server with a static route for its IP and then another identical bond to the third server.

This allows all three servers to communicate at 20Gbit/s and then at 2Gbit/s to the outside world. The fast links will almost exclusively be carrying Ceph, OVN and LXD internal traffic, the kind of traffic that’s using a lot of bandwidth and requires good latency.

To complete the network setup, OVN is installed using the ovn-central and ovn-host packages from Ubuntu and then configured to communicate using the internal mesh subnet.

This part is done by editing /etc/default/ovn-central on all 3 systems and updating OVN_CTL_OPTS to pass a number of additional parameters:

  • --db-nb-addr to the local address
  • --db-sb-addr to the local address
  • --db-nb-cluster-local-addr to the local address
  • --db-sb-cluster-local-addr to the local address
  • --db-nb-cluster-remote-addr to the first server’s address
  • --db-sb-cluster-remote-addr to the first server’s address
  • --ovn-northd-nb-db to all the addresses (port 6641)
  • --ovn-northd-sb-db to all the addresses (port 6642)

The first server shouldn’t have the remote-addr ones set as it’s the bootstrap server, the others will then join that initial server and join the cluster at which point that startup argument isn’t needed anymore (but it doesn’t really hurt to keep it in the config).

If OVN was running unclustered, you’ll want to reset it by wiping /var/lib/ovn and restarting ovn-central.service.

Storage setup

On the storage side, I won’t go over how to get a three nodes Ceph cluster, there are many different ways to achieve that using just about every deployment/configuration management tool in existence as well as upstream’s own ceph-deploy tool.

In short, the first step is to deploy a Ceph monitor (ceph-mon) per server, followed by a Ceph manager (ceph-mgr) and a Ceph metadata server (ceph-mds). With that done, one Ceph OSD (ceph-osd) per drive needs to be setup. In my case, both the HDDs and the NVME SSD are consumed in full for this while for the SATA SSD I created a partition using the remaining space from the installation and put that into Ceph.

At that stage, you may want to learn about Ceph crush maps and do any tweaking that you want based on your storage setup.

In my case, I have two custom crush rules, one which targets exclusively HDDs and one which targets exclusively SSDs. I’ve also made sure that each drive has the proper device class and I’ve tweaked the affinity a bit such that the faster drives will be prioritized for the first replica.

I’ve also created an initial ceph fs filesystem for use by LXD with:

ceph osd pool create lxd-cephfs_metadata 32 32 replicated replicated_rule_ssd
ceph osd pool create lxd-cephfs_data 32 32 replicated replicated_rule_hdd
ceph fs new lxd-cephfs lxd-cephfs_metadata lxd-cephfs_data
ceph fs set lxd-cephfs allow_new_snaps true

This makes use of those custom rules, putting the metadata on SSD with the actual data on HDD.

The cluster should then look something a bit like that:

root@langara:~# ceph status
  cluster:
    id:     dd7a8436-46ff-4017-9fcb-9ef176409fc5
    health: HEALTH_OK
 
  services:
    mon: 3 daemons, quorum abydos,langara,orilla (age 37m)
    mgr: langara(active, since 41m), standbys: abydos, orilla
    mds: lxd-cephfs:1 {0=abydos=up:active} 2 up:standby
    osd: 12 osds: 12 up (since 37m), 12 in (since 93m)
 
  task status:
    scrub status:
        mds.abydos: idle
 
  data:
    pools:   5 pools, 129 pgs
    objects: 16.20k objects, 53 GiB
    usage:   159 GiB used, 34 TiB / 34 TiB avail
    pgs:     129 active+clean

With the OSDs configured like so:

root@langara:~# ceph osd tree
ID  CLASS  WEIGHT    TYPE NAME         STATUS  REWEIGHT  PRI-AFF
-1         34.02979  root default                               
-3         11.34326      host abydos                            
 4    hdd   3.63869          osd.4         up   1.00000  0.12500
 7    hdd   5.45799          osd.7         up   1.00000  0.25000
 0    ssd   0.46579          osd.0         up   1.00000  1.00000
10    ssd   1.78079          osd.10        up   1.00000  0.75000
-5         11.34326      host langara                           
 5    hdd   3.63869          osd.5         up   1.00000  0.12500
 8    hdd   5.45799          osd.8         up   1.00000  0.25000
 1    ssd   0.46579          osd.1         up   1.00000  1.00000
11    ssd   1.78079          osd.11        up   1.00000  0.75000
-7         11.34326      host orilla                            
 3    hdd   3.63869          osd.3         up   1.00000  0.12500
 6    hdd   5.45799          osd.6         up   1.00000  0.25000
 2    ssd   0.46579          osd.2         up   1.00000  1.00000
 9    ssd   1.78079          osd.9         up   1.00000  0.75000

LXD setup

The last piece is building up a LXD cluster which will then be configured to consume both the OVN networking and Ceph storage.

For OVN support, using an LTS branch of LXD won’t work as 4.0 LTS predates OVN support, so instead I’ll be using the latest stable release.

Installation is as simple as: snap install lxd --channel=latest/stable

Then on run lxd init on the first server, answer yes to the clustering question, make sure the hostname is correct and that the address used is that on the mesh subnet, then create the new cluster setting an initial password and skipping over all the storage and network questions, it’s easier to configure those by hand later on.

After that, run lxd init on the remaining two servers, this time pointing them to the first server to join the existing cluster.

With that done, you have a LXD cluster:

root@langara:~# lxc cluster list
+----------+-------------------------------------+----------+--------+-------------------+--------------+----------------+
|   NAME   |                 URL                 | DATABASE | STATE  |      MESSAGE      | ARCHITECTURE | FAILURE DOMAIN |
+----------+-------------------------------------+----------+--------+-------------------+--------------+----------------+
| server-1 | https://[2602:XXXX:Y:ZZZ::100]:8443 | YES      | ONLINE | fully operational | x86_64       | default        |
+----------+-------------------------------------+----------+--------+-------------------+--------------+----------------+
| server-2 | https://[2602:XXXX:Y:ZZZ::101]:8443 | YES      | ONLINE | fully operational | x86_64       | default        |
+----------+-------------------------------------+----------+--------+-------------------+--------------+----------------+
| server-3 | https://[2602:XXXX:Y:ZZZ::102]:8443 | YES      | ONLINE | fully operational | x86_64       | default        |
+----------+-------------------------------------+----------+--------+-------------------+--------------+----------------+

Now that cluster needs to be configured to access OVN and to use Ceph for storage.

On the OVN side, all that’s needed is: lxc config set network.ovn.northbound_connection tcp:<server1>:6641,tcp:<server2>:6641,tcp:<server3>:6641

As for Ceph creating a Ceph RBD storage pool can be done with:

lxc storage create ssd ceph source=lxd-ssd --target server-1
lxc storage create ssd ceph source=lxd-ssd --target server-2
lxc storage create ssd ceph source=lxd-ssd --target server-3
lxc storage create ssd ceph

And for Ceph FS:

lxc storage create shared cephfs source=lxd-cephfs --target server-1
lxc storage create shared cephfs source=lxd-cephfs --target server-2
lxc storage create shared cephfs source=lxd-cephfs --target server-3
lxc storage create shared cephfs

In my case, I’ve also setup a lxd-hdd pool, resulting in a final setup of:

root@langara:~# lxc storage list
+--------+-------------+--------+---------+---------+
|  NAME  | DESCRIPTION | DRIVER |  STATE  | USED BY |
+--------+-------------+--------+---------+---------+
| hdd    |             | ceph   | CREATED | 1       |
+--------+-------------+--------+---------+---------+
| shared |             | cephfs | CREATED | 0       |
+--------+-------------+--------+---------+---------+
| ssd    |             | ceph   | CREATED | 16      |
+--------+-------------+--------+---------+---------+

Up next

The next post is likely to be quite network heavy, going into why I’m using dynamic routing and how I’ve got it all setup. This is the missing piece of the puzzle in what I’ve shown so far as without it, you’d need an external router with a bunch of static routes to send traffic to the OVN networks.

Posted in Canonical voices, LXD, Planet Ubuntu | Tagged | 3 Comments

Inexpensive highly available LXD cluster: Redundancy

In the previous post I went over the reasons for switching to my own hardware and what hardware I ended up selecting for the job.

Now it’s time to look at how I intend to achieve the high availability goals of this setup. Effectively limiting the number of single point of failure as much as possible.

Hardware redundancy

On the hardware front, every server has:

  • Two power supplies
  • Hot swappable storage
  • 6 network ports served by 3 separate cards
  • BMC (IPMI/redfish) for remote monitoring and control

The switch is the only real single point of failure on the hardware side of things. But it also has two power supplies and hot swappable fans. If this ever becomes a problem, I can also source a second unit and use data and power stacking along with MLAG to get rid of this single point of failure.

I mentioned that each server has four 10Gbit ports yet my switch is Gigabit. This is fine as I’ll be using a mesh type configuration for the high-throughput part of the setup. Effectively connecting each server to the other two with a dual 10Gbit bond each. Then each server will get a dual Gigabit bond to the switch for external connectivity.

Software redundancy

The software side is where things get really interesting, there are three main aspects that need to be addressed:

  • Storage
  • Networking
  • Compute

Storage

For storage, the plan is to rely on Ceph, each server will run a total of 4 OSDs, one per physical drive with the SATA SSD acting as boot drive too with the OSD being a large partition on it instead of the full disk.

Each server will also act as MON, MGR and MDS providing a fully redundant Ceph cluster on 3 machines capable of providing both block and filesystem storage through RBD and FS.

Two maps will be setup, one for HDD storage and one for SSD storage.
Storage affinity will also be configured such that the NVME drives will be used for the primary replica in the SSD map with the SATA drives holding secondary/tertiary replicas instead.

This makes the storage layer quite reliable. A full server can go down with only minimal impact. Should a server being offline be caused by hardware failure, the on-site staff can very easily relocate the drives from the failed server to the other two servers allowing Ceph to recover the majority of its OSDs until the defective server can be repaired.

Networking

Networking is where things get quite complex when you want something really highly available. I’ll be getting a Gigabit internet drop from the co-location facility on top of which a /27 IPv4 and a /48 IPv6 subnet will be routed.

Internally, I’ll be running many small networks grouping services together. None of those networks will have much in the way of allowed ingress/egress traffic and the majority of them will be IPv6 only.

The majority of egress will be done through a proxy server and IPv4 access will be handled through a DNS64/NAT64 setup.
Ingress when needed will be done by directly routing an additional IPv4 or IPv6 address to the instance running the external service.

At the core of all this will be OVN which will run on all 3 machines with its database clustered. Similar to Ceph for storage, this allows machines to go down with no impact on the virtual networks.

Where things get tricky is on providing a highly available uplink network for OVN. OVN draws addresses from that uplink network for its virtual routers and routes egress traffic through the default gateway on that network.

One option would be for a static setup, have the switch act as the gateway on the uplink network, feed that to OVN over a VLAN and then add manual static routes for every public subnet or public address which needs routing to a virtual network. That’s easy to setup, but I don’t like the need to constantly update static routing information in my switch.

Another option is to use LXD’s l2proxy mode for OVN, this effectively makes OVN respond to ARP/NDP for any address it’s responsible for but then requires the entire IPv4 and IPv6 subnet to be directly routed to the one uplink subnet. This can get very noisy and just doesn’t scale well with large subnets.

The more complicated but more flexible option is to use dynamic routing.
Dynamic routing involves routers talking to each other, advertising and receiving routes. That’s the core of how the internet works but can also be used for internal networking.

My setup effectively looks like this:

  • Three containers running FRR each connected to both the direct link with the internet provider and to the OVN uplink network.
  • Each one of those will maintain BGP sessions with the internet provider’s routers AS WELL as with the internal hosts running OVN.
  • VRRP is used to provide a single highly available gateway address on the OVN uplink network.
  • I wrote lxd-bgp as a small BGP daemon that integrates with the LXD API to extract all the OVN subnets and instance addresses which need to be publicly available and announces those routes to the three routers.

This may feel overly complex and it quite possibly is, but that gives me three routers, one on each server and only one of which need to be running at any one time. It also gives me the ability to balance routing traffic both ingress or egress by tweaking the BGP or VRRP priorities.

The nice side effect of this setup is that I’m also able to use anycast for critical services both internally and externally. Effectively running three identical copies of the service, one per server, all with the exact same address. The routers will be aware of all three and will pick one at the destination. If that instance or server goes down, the route disappears and the traffic goes to one of the other two!

Compute

On the compute side, I’m obviously going to be using LXD with the majority of services running in containers and with a few more running in virtual machines.

Stateless services that I want to always be running no matter what happens will be using anycast as shown above. This also applies to critical internal services as is the case above with my internal DNS resolvers (unbound).

Other services may still run two or more instances and be placed behind a load balancing proxy (HAProxy) to spread the load as needed and handle failures.

Lastly even services that will only be run by a single instance will still benefit from the highly available environment. All their data will be stored on Ceph, meaning that in the event of a server maintenance or failure, it’s a simple matter of running lxc move to relocate them to any of the others and bring them back online. When planned ahead of time, this is service downtime of less than 5s or so.

Up next

In the next post, I’ll be going into more details on the host setup, setting up Ubuntu 20.04 LTS, Ceph, OVN and LXD for such a cluster.

Posted in Canonical voices, LXD, Planet Ubuntu | Tagged | 2 Comments

Inexpensive highly available LXD cluster: Introduction

It’s been a couple of years since I last posted here, instead I’ve mostly been focusing on LXD specific content which I’ve been publishing on our discussion forum rather than on my personal blog.

But this is going to be a bit of a journey and is about my personal infrastructure so this feels like a better home for it!

What is this all about?

For years now, I’ve been using dedicated servers from the likes of Hetzner or OVH to host my main online services, things ranging from DNS servers, to this blog, to websites for friends and family, to more critical things like the linuxcontainers.org website, forum and main image publishing logic.

All in all, that’s around 30 LXD instances with a mix of containers and virtual machines that need to run properly 24/7 and have good internet access.

I’m a sysadmin at heart, I know how to design and run complex infrastructures, how to automate things, monitor things and fix them when things go bad. But having everything rely on a single beefy machine rented month to month from an online provider definitely has its limitations and this series is all about fixing that!

The current state of things

As mentioned, I have about 30 LXD instances that need to be online 24/7.
This is currently done using a single server at OVH in Montreal with:

  • CPU: Intel Xeon E3-1270v6 (4c/8t)
  • RAM: 32GB
  • HDD: 2x500GB NVME + 2x2TB CMR HDD
  • Network: 1Gb/s (with occasional limit down to 500Mb/s)
  • OS: Ubuntu 18.04 LTS with HWE kernel and latest LXD
  • Cost: 160.95 CAD/month (with taxes)

I consider this a pretty good value for the cost, it comes with BMC access for remote maintenance, some amount of monitoring and on-site staff to deal with hardware failures.

But everything goes offline if:

  • Any hardware fail (except for storage which is redundant)
  • System needs rebooting
  • LXD or kernel crashes

LXD has a very solid clustering feature now which requires a minimum of 3 servers and will provide a highly available database and API layer. This can be combined with distributed storage through Ceph and distributed networking through OVN.

But to benefit from this, you need 3 servers and you need fast networking between those 3 servers. Looking around for options in the sub-500CAD price range didn’t turn up anything particularly suitable so I started considering alternatives.

Going with my own hardware

If you can’t rent anything at a reasonable price, the alternative is to own it.
Buying 3 brand new servers and associated storage and network equipment was out of the question. This would quickly balloon into the tens of thousands of dollars for something I’d like to buy new and just isn’t worth it given the amount of power I actually need out of this cluster.

So as many in that kind of situation, I went on eBay 🙂
My criteria list ended up being:

  • SuperMicro servers
    This is simply because I already own a few and I operate a rack full of them for NorthSec. I know their product lines, I know their firmware and BMCs and I know how to get replacement parts and fix them.
  • Everything needs to be dual-PSU
  • Servers must be on the SuperMicro X10 platform or more recent.
    This effectively means I get Xeon E-series v3 or v4 and get basic RedFish support in the firmware for remote management.
  • 64GB of RAM or more
  • At least two 10Gb ports
  • Cost 1000CAD or less a piece

In the end, I ended up shopping directly with UnixSurplus through their eBay store. I’ve used them before and they pretty much beat everyone else on pricing for used SuperMicro kit.

What I settled on is three:

The motherboard supports Xeon E5v4 chips, so the CPUs can be swapped for more recent and much more powerful chips should the need arise and good candidates show up on eBay. Same story with the memory, this is just 4 sticks of 16GB leaving 20 free slots for expansion.

For each of them, I’ve then added some storage and networking:

  • 1x 500GB Samsung 970 Pro NVME (avoid the 980 Pro, they’re not as good)
  • 1x 2TB Samsung 860 Pro SATA SSD
  • 1x 4TB Seagate Ironwolf Pro CMR HDD
  • 1x 6TB Seagate Ironwolf Pro CMR HDD
  • 1x U.2 to PCIe adapter (no U.2 on this motherboard)
  • 1x 2.5″ to 3.5″ adapter (so the SSD can fit in a tray)
  • 1x Intel I350-T2
  • Cost: 950CAD per server

For those, I went with new off Amazon/Newegg and picked what felt like the best deal at the time. I went with high quality consumer/NAS parts rather than DC grade but using parts I’ve been running 24/7 elsewhere before and that in my experience provide adequate performance.

For the network side of things, I wanted a 24 ports gigabit switch with dual power supply, hot replaceable fans and support for 10Gbit uplink. NorthSec has a whole bunch of C3750X which have worked well for us and are at the end of their supported life making them very cheap on eBay, so I got a C3750X with a 10Gb module for around 450CAD.

Add everything up and the total hardware cost ends up at a bit over 6000CAD, make it 6500CAD with extra cables and random fees.
My goal is to keep that hardware running for around 5 years so a monthly cost of just over 100CAD.

Where to put all this

Before I actually went ahead and ordered all that stuff though, I had to figure out a place for it and sort out a deal for power and internet.

Getting good co-location deals for less than 5U of space is pretty tricky. Most datacenter won’t even talk to you if you want less than a half rack or a rack.

Luckily for me, I found a Hive Datacenter that’s less than a 30min drive from here and which has nice public pricing on a per-U basis. After some chit chat, I got a contract for 4U of space with enough power and bandwidth for my needs. They also have a separate network for your OOB/IPMI/BMC equipment which you can connect to over VPN!

This sorts out the where to put it all, so I placed my eBay order and waited for the hardware to arrive!

Up next

So that post pretty much cover the needs and current situation and the hardware and datacenter I’ll be using for the new setup.

What’s not described is how I actually intend to use all this hardware to get me the highly available setup that I’m looking for!

The next post goes over all the redundancy in this setup, looking at storage, network and control plane and how it can handle various failure cases.

Posted in Canonical voices, LXD, Planet Ubuntu | Tagged | Leave a comment